Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 741
Filter
1.
Mikrochim Acta ; 191(5): 282, 2024 04 23.
Article in English | MEDLINE | ID: mdl-38652326

ABSTRACT

A novel dual-mode fluorometric and colorimetric sensing platform is reported for determining glutathione S-transferase (GST) by utilizing polyethyleneimine-capped silver nanoclusters (PEI-AgNCs) and cobalt-manganese oxide nanosheets (CoMn-ONSs) with oxidase-like activity. Abundant active oxygen species (O2•-) can be produced through the CoMn-ONSs interacting with dissolved oxygen. Afterward, the pink oxDPD was generated through the oxidation of colorless N,N-diethyl-p-phenylenediamine (DPD) by O2•-, and two absorption peaks at 510 and 551 nm could be observed. Simultaneously, oxDPD could quench the fluorescence of PEI-AgNCs at 504 nm via the inner filter effect (IFE). However, in the presence of glutathione (GSH), GSH prevents the oxidation of DPD due to the reducibility of GSH, leading to the absorbance decrease at 510 and 551 nm. Furthermore, the fluorescence at 504 nm was restored due to the quenching effect of oxDPD on decreased PEI-AgNCs. Under the catalysis of GST, GSH and1-chloro-2,4-dinitrobenzo (CDNB) conjugate to generate an adduct, initiating the occurrence of the oxidation of the chromogenic substrate DPD, thereby inducing a distinct colorimetric response again and the significant quenching of PEI-AgNCs. The detection limits for GST determination were 0.04 and 0.21 U/L for fluorometric and colorimetric modes, respectively. The sensing platform illustrated reliable applicability in detecting GST in real samples.


Subject(s)
Cobalt , Colorimetry , Glutathione Transferase , Manganese Compounds , Metal Nanoparticles , Oxides , Polyethyleneimine , Silver , Polyethyleneimine/chemistry , Silver/chemistry , Cobalt/chemistry , Oxides/chemistry , Manganese Compounds/chemistry , Metal Nanoparticles/chemistry , Colorimetry/methods , Glutathione Transferase/metabolism , Glutathione Transferase/chemistry , Limit of Detection , Oxidoreductases/chemistry , Oxidoreductases/metabolism , Humans , Glutathione/chemistry , Oxidation-Reduction , Biosensing Techniques/methods , Phenylenediamines/chemistry , Nanostructures/chemistry
2.
Environ Sci Technol ; 58(13): 5921-5931, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38512777

ABSTRACT

Identifying transformed emerging contaminants in complex environmental compartments is a challenging but meaningful task. Substituted para-phenylenediamine quinones (PPD-quinones) are emerging contaminants originating from rubber antioxidants and have been proven to be toxic to the aquatic species, especially salmonids. The emergence of multiple PPD-quinones in various environmental matrices and evidence of their specific hazards underscore the need to understand their environmental occurrences. Here, we introduce a fragmentation pattern-based nontargeted screening strategy combining full MS/All ion fragmentation/neutral loss-ddMS2 scans to identify potential unknown PPD-quinones in different environmental matrices. Using diagnostic fragments of m/z 170.0600, 139.0502, and characteristic neutral losses of 199.0633, 138.0429 Da, six known and three novel PPD-quinones were recognized in air particulates, surface soil, and tire tissue. Their specific structures were confirmed, and their environmental concentration and composition profiles were clarified with self-synthesized standards. N-(1-methylheptyl)-N'-phenyl-1,4-benzenediamine quinone (8PPD-Q) and N,N'-di(1,3-dimethylbutyl)-p-phenylenediamine quinone (66PD-Q) were identified and quantified for the first time, with their median concentrations found to be 0.02-0.21 µg·g-1 in tire tissue, 0.40-2.76 pg·m-3 in air particles, and 0.23-1.02 ng·g-1 in surface soil. This work provides new evidence for the presence of unknown PPD-quinones in the environment, showcasing a potential strategy for screening emerging transformed contaminants in the environment.


Subject(s)
Phenylenediamines , Quinones , Phenylenediamines/chemistry , Benzoquinones , Soil
3.
Dalton Trans ; 53(14): 6311-6322, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38487871

ABSTRACT

While platinum(II)-based drugs continue to be employed in cancer treatments, the escalating occurrence of severe side effects has spurred researchers to explore novel sources for potential therapeutic agents. Notably, cobalt(III) has emerged as a subject of considerable interest due to its ubiquitous role in human physiology. Several studies investigating the anticancer effects of Salphen complexes derived from cobalt(III) have unveiled intriguing antiproliferative properties. In a bid to enhance our understanding of this class of compounds, we synthesized and characterized two novel half Salphen cobalt(III) complexes. Both compounds exhibited notable stability, even in the presence of physiologically relevant concentrations of glutathione. The application of spectroscopic and computational methodologies unravelled their interactions with duplex and G4-DNAs, suggesting an external binding affinity for these structures, with preliminary indications of selectivity trends. Importantly, antiproliferative assays conducted on 3D cultured SW-1353 cancer cells unveiled a compelling anticancer activity at low micromolar concentrations, underscoring the potential therapeutic efficacy of this novel class of cobalt(III) complexes.


Subject(s)
Antineoplastic Agents , Coordination Complexes , Humans , Coordination Complexes/chemistry , Cobalt/pharmacology , Cobalt/chemistry , Phenylenediamines/chemistry , DNA/chemistry , Antineoplastic Agents/chemistry
4.
Environ Pollut ; 340(Pt 2): 122828, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37907191

ABSTRACT

Numerous toxic substances are directly and indirectly discharged by humans into water bodies, causing distress to the organisms living on it. 6PPD, an amino antioxidant from tires reacts with ozone to form 6PPD-Q, which has garnered global attention due to its lethal nature to various organisms. This review aims to provide an understanding of the sources, transformation, and fate of 6PPD-Q in water and the current knowledge on its effects on aquatic organisms. Furthermore, we discuss research gaps pertaining to the mechanisms by which 6PPD-Q acts within fish bodies. Previous studies have demonstrated the ubiquitous presence of 6PPD-Q in the environment, including air, water, and soil. Moreover, this compound has shown high lethality to certain fish species while not affecting others. Toxicological studies have revealed its impact on the nervous system, intestinal barrier function, cardiac function, equilibrium loss, and oxidative stress in various fish species. Additionally, exposure to 6PPD-Q has led to organ injury, lipid accumulation, and cytokine production in C. elegans and mice. Despite studies elucidating the lethal dose and effects of 6PPD-Q in fish species, the underlying mechanisms behind these symptoms remain unclear. Future studies should prioritize investigating the mechanisms underlying the lethality of 6PPD-Q in fish species to gain a better understanding of its potential effects on different organisms.


Subject(s)
Aquaculture , Benzoquinones , Fishes , Phenylenediamines , Water , Animals , Humans , Mice , Caenorhabditis elegans , Fisheries , Phenylenediamines/chemistry , Phenylenediamines/toxicity , Benzoquinones/chemistry , Benzoquinones/toxicity , Fishes/metabolism , Lethal Dose 50
5.
Environ Sci Technol ; 57(49): 20813-20821, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38032317

ABSTRACT

The photochemical degradation pathways of 6PPD-quinone (6PPDQ, 6PPD-Q), a toxic transformation product of the tire antiozonant 6PPD, were determined under simulated sunlight conditions typical of high-latitude surface waters. Direct photochemical degradation resulted in 6PPDQ half-lives ranging from 17.5 h at 20 °C to no observable degradation over 48 h at 4 °C. Sensitization of excited triplet-state pathways using Cs+ and Ar purging demonstrated that 6PPDQ does not decompose significantly from a triplet state relative to a singlet state. However, assessment of processes involving reactive oxygen species (ROS) quenchers and sensitizers indicated that singlet oxygen and hydroxyl radical do significantly contribute to the degradation of 6PPDQ. Investigation of these processes in natural lake waters indicated no difference in attenuation rates for direct photochemical processes at 20 °C. This suggests that direct photochemical degradation will dominate in warm waters, while indirect photochemical pathways will dominate in cold waters, involving ROS mediated by chromophoric dissolved organic matter (CDOM). Overall, the aquatic photodegradation rate of 6PPDQ will be strongly influenced by the compounding effects of environmental factors such as light screening and temperature on both direct and indirect photochemical processes. Transformation products were identified via UHPLC-Orbitrap mass spectrometry, revealing four major processes: (1) oxidation and cleavage of the quinone ring in the presence of ROS, (2) dealkylation, (3) rearrangement, and (4) deamination. These data indicate that 6PPDQ can photodegrade in cool, sunlit waters under the appropriate conditions: t1/2 = 17.4 h tono observable decrease (direct); t1/2 = 5.2-11.2 h (indirect, CDOM).


Subject(s)
Benzoquinones , Dissolved Organic Matter , Lakes , Phenylenediamines , Photolysis , Reactive Oxygen Species , Water Pollutants, Chemical , Benzoquinones/chemistry , Benzoquinones/radiation effects , Dissolved Organic Matter/chemistry , Reactive Oxygen Species/chemistry , Reactive Oxygen Species/metabolism , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/radiation effects , Phenylenediamines/chemistry , Phenylenediamines/radiation effects , Lakes/analysis , Lakes/chemistry
6.
Environ Pollut ; 334: 122116, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37394053

ABSTRACT

Tire tread particles (TTP) are environmentally prevalent microplastics and generate toxic aqueous leachate. We determined the total carbon and nitrogen leachate concentrations and chemical profiles from micron (∼32 µm) and centimeter (∼1 cm) TTP leachate over 12 days. Dissolved organic carbon (DOC) and total dissolved nitrogen (TDN) were used to measure the concentration of leached compounds. Nontargeted chemical analysis by comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry (GC×GC/TOF-MS) was used to compare the chemical profiles of leachates. After leaching for 12 days, DOC was 4.0 times higher in the micron TTP leachate than in the centimeter TTP leachate, and TDN was 2.6 times higher. The total GC×GC/TOF-MS chromatographic feature peak area was 2.9 times greater in the micron TTP leachate than the centimeter TTP leachate, and similarly, the total relative abundance of 54 tentatively identified compounds was 3.3 times greater. We identified frequently measured tire-related chemicals, such as 6PPD, N-cyclohexyl-N'-phenylurea (CPU), and hexa(methoxymethyl)melamine (HMMM), but nearly 50% of detected chemicals were not previously reported in tire literature or lacked toxicity information. Overall, the results demonstrate that smaller TTP have a greater potential to leach chemicals into aquatic systems, but a significant portion of these chemicals are not well-studied and require further risk assessment.


Subject(s)
Dissolved Organic Matter , Phenylenediamines , Plastics , Water Pollutants, Chemical , Dissolved Organic Matter/analysis , Dissolved Organic Matter/chemistry , Dissolved Organic Matter/classification , Gas Chromatography-Mass Spectrometry , Plastics/analysis , Plastics/chemistry , Plastics/classification , Particle Size , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/classification , Phenylenediamines/analysis , Phenylenediamines/chemistry , Phenylenediamines/classification , Risk Assessment
7.
Environ Sci Process Impacts ; 25(5): 901-911, 2023 May 25.
Article in English | MEDLINE | ID: mdl-37042393

ABSTRACT

We here report chemical characteristics relevant to the fate and transport of the recently discovered environmental toxicant 6PPD-quinone (2-((4-methylpentan-2-yl)amino)-5-(phenylamino)cyclohexa-2,5-diene-1,4-dione or "6PPDQ"). 6PPDQ is a transformation product of the tire rubber antioxidant 6PPD that is ubiquitous in roadway environments, including atmospheric particulate matter, soils, runoff, and receiving waters, after dispersal from tire rubber use and wear on roadways. The aqueous solubility and octanol-water partitioning coefficient (i.e. log KOW) for 6PPDQ were measured to be 38 ± 10 µg L-1 and 4.30 ± 0.02, respectively. Within the context of analytical measurement and laboratory processing, sorption to various laboratory materials was evaluated, indicating that glass was largely inert but loss of 6PPDQ to other materials was common. Aqueous leaching simulations from tire tread wear particles (TWPs) indicated short term release of ∼5.2 µg 6PPDQ per gram TWP over 6 h under flow-through conditions. Aqueous stability tests observed a slight-to-moderate loss of 6PPDQ over 47 days (26 ± 3% loss) for pH 5, 7 and 9. These measured physicochemical properties suggest that 6PPDQ is generally poorly soluble but fairly stable over short time periods in simple aqueous systems. 6PPDQ can also leach readily from TWPs for subsequent environmental transport, posing high potential for adverse effects in local aquatic environments.


Subject(s)
Benzoquinones , Hazardous Substances , Phenylenediamines , Rubber , Water Pollutants, Chemical , Hazardous Substances/chemistry , Particulate Matter/chemistry , Water/chemistry , Water Pollutants, Chemical/chemistry , Phenylenediamines/chemistry , Benzoquinones/chemistry , Solubility
8.
Environ Sci Technol ; 57(14): 5621-5632, 2023 04 11.
Article in English | MEDLINE | ID: mdl-36996351

ABSTRACT

6PPD, a tire rubber antioxidant, poses substantial ecological risks because it can form a highly toxic quinone transformation product (TP), 6PPD-quinone (6PPDQ), during exposure to gas-phase ozone. Important data gaps exist regarding the structures, reaction mechanisms, and environmental occurrence of TPs from 6PPD ozonation. To address these data gaps, gas-phase ozonation of 6PPD was conducted over 24-168 h and ozonation TPs were characterized using high-resolution mass spectrometry. The probable structures were proposed for 23 TPs with 5 subsequently standard-verified. Consistent with prior findings, 6PPDQ (C18H22N2O2) was one of the major TPs in 6PPD ozonation (∼1 to 19% yield). Notably, 6PPDQ was not observed during ozonation of 6QDI (N-(1,3-dimethylbutyl)-N'-phenyl-p-quinonediimine), indicating that 6PPDQ formation does not proceed through 6QDI or associated 6QDI TPs. Other major 6PPD TPs included multiple C18H22N2O and C18H22N2O2 isomers, with presumptive N-oxide, N,N'-dioxide, and orthoquinone structures. Standard-verified TPs were quantified in roadway-impacted environmental samples, with total concentrations of 130 ± 3.2 µg/g in methanol extracts of tire tread wear particles (TWPs), 34 ± 4 µg/g-TWP in aqueous TWP leachates, 2700 ± 1500 ng/L in roadway runoff, and 1900 ± 1200 ng/L in roadway-impacted creeks. These data demonstrate that 6PPD TPs are likely an important and ubiquitous class of contaminants in roadway-impacted environments.


Subject(s)
Antioxidants , Benzoquinones , Phenylenediamines , Rubber , Antioxidants/chemistry , Ozone/chemistry , Rubber/chemistry , Water/chemistry , Phenylenediamines/chemistry , Benzoquinones/chemistry
9.
Environ Sci Technol ; 57(14): 5978-5987, 2023 04 11.
Article in English | MEDLINE | ID: mdl-36992570

ABSTRACT

Rapid urbanization drives increased emission of tire wear particles (TWPs) and the contamination of a transformation product derived from tire antioxidant, termed as N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine-quinone (6PPD-Q), with adverse implications for terrestrial ecosystems and human health. However, whether and how 6PPD-Q could be formed during the aging of TWPs in soils remains poorly understood. Here, we examine the accumulation and formation mechanisms of 6PPD-Q during the aging of TWPs in soils. Our results showed that biodegradation predominated the fate of 6PPD-Q in soils, whereas anaerobic flooded conditions were conducive to the 6PPD-Q formation and thus resulted in a ∼3.8-fold higher accumulation of 6PPD-Q in flooded soils than wet soils after aging of 60 days. The 6PPD-Q formation in flooded soils was enhanced by Fe reduction-coupled 6PPD oxidation in the first 30 days, while the transformation of TWP-harbored environmentally persistent free radicals (EPFRs) to superoxide radicals (O2•-) under anaerobic flooded conditions further dominated the formation of 6PPD-Q in the next 30 days. This study provides significant insight into understanding the aging behavior of TWPs and highlights an urgent need to assess the ecological risk of 6PPD-Q in soils.


Subject(s)
Benzoquinones , Phenylenediamines , Soil , Wetlands , Humans , Anaerobiosis , Free Radicals/chemistry , Iron/chemistry , Phenylenediamines/chemistry , Benzoquinones/chemistry , Oxidation-Reduction , Biodegradation, Environmental , Wettability
10.
Environ Sci Technol ; 57(13): 5216-5230, 2023 04 04.
Article in English | MEDLINE | ID: mdl-36961979

ABSTRACT

The discovery that the commercial rubber antidegradant 6PPD reacts with ozone (O3) to produce a highly toxic quinone (6PPDQ) spurred a significant research effort into nontoxic alternatives. This work has been hampered by lack of a detailed understanding of the mechanism of protection that 6PPD affords rubber compounds against ozone. Herein, we report high-level density functional theory studies into early steps of rubber and PPD (p-phenylenediamine) ozonation, identifying key steps that contribute to the antiozonant activity of PPDs. In this, we establish that our density functional theory approach can achieve chemical accuracy for many ozonation reactions, which are notoriously difficult to model. Using adiabatic energy decomposition analysis, we examine and dispel the notion that one-electron charge transfer initiates ozonation in these systems, as is sometimes argued. Instead, we find direct interaction between O3 and the PPD aromatic ring is kinetically accessible and that this motif is more significant than interactions with PPD nitrogens. The former pathway results in a hydroxylated PPD intermediate, which reacts further with O3 to afford 6PPD hydroquinone and, ultimately, 6PPDQ. This mechanism directly links the toxicity of 6PPDQ to the antiozonant function of 6PPD. These results have significant implications for development of alternative antiozonants, which are discussed.


Subject(s)
Benzoquinones , Phenylenediamines , Rubber , Water Pollutants, Chemical , Water Purification , Electron Transport , Ozone/chemistry , Rubber/chemistry , Water Pollutants, Chemical/chemistry , Water Purification/methods , Phenylenediamines/chemistry , Benzoquinones/chemistry , Kinetics
11.
J Hazard Mater ; 452: 131245, 2023 06 15.
Article in English | MEDLINE | ID: mdl-36958160

ABSTRACT

Tire wear compounds N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD) and its derivative 6PPD-quinone have been considered as emerging pollutants and attracted much attention recently. As an antioxidant and antiozonant widely used, 6PPD would be released during the production or use of rubber-related products. Because of the mass production and wide use of rubber-related products, 6PPD and 6PPD-quinone have been identified to be ubiquitous in the environment. In this study, we firstly reviewed the current available literature on the analytical procedures, concentrations and distribution of 6PPD and 6PPD-quinone, and then investigated the potential toxic effects of these two compounds on aquatic organisms. Current studies have been mainly focused on the occurrence of 6PPD and 6PPD-quinone in dust and water, while available information on atmosphere, soil, sediments and organisms is limited. The fate and distribution of 6PPD and 6PPD-quinone would be influenced by environmental factors such as temperature, illumination, and storm events, etc. Although 6PPD and 6PPD-quinone have potential adverse effects on aquatic organisms, and 6PPD-quinone has species-specific toxicity, toxicological mechanisms of these compounds are still unclear. Based on the review and analysis of current studies, some suggestions for future research of 6PPD and 6PPD-quinone are given.


Subject(s)
Benzoquinones , Environmental Pollutants , Phenylenediamines , Rubber , Benzoquinones/analysis , Benzoquinones/chemistry , Benzoquinones/toxicity , Dust , Environmental Pollutants/analysis , Environmental Pollutants/chemistry , Environmental Pollutants/toxicity , Phenylenediamines/analysis , Phenylenediamines/chemistry , Phenylenediamines/toxicity , Rubber/chemistry , Rubber/toxicity , Water/chemistry
12.
Environ Sci Technol ; 57(7): 2779-2791, 2023 02 21.
Article in English | MEDLINE | ID: mdl-36758188

ABSTRACT

Recently, roadway releases of N,N'-substituted p-phenylenediamine (PPD) antioxidants and their transformation products (TPs) received significant attention due to the highly toxic 6PPD-quinone. However, the occurrence of PPDs and TPs in recycled tire rubber products remains uncharacterized. Here, we analyzed tire wear particles (TWPs), recycled rubber doormats, and turf-field crumb rubbers for seven PPD antioxidants, five PPD-quinones (PPDQs), and five other 6PPD TPs using liquid chromatography-tandem mass spectrometry. PPD antioxidants, PPDQs, and other TPs were present in all samples with chemical profiles dominated by 6PPD, DTPD, DPPD, and their corresponding PPDQs. Interestingly, the individual [PPDQ]/[PPD] and [TP]/[PPD] ratios significantly increased as total concentrations of the PPD-derived chemical decreased, indicating that TPs (including PPDQs) dominated the PPD-derived compounds with increased environmental weathering. Furthermore, we quantified 15 other industrial rubber additives (including bonding agents, vulcanization accelerators, benzotriazole and benzothiazole derivatives, and diphenylamine antioxidants), observing that PPD-derived chemical concentrations were 0.5-6 times higher than these often-studied additives. We also screened various other elastomeric consumer products, consistently detecting PPD-derived compounds in lab stoppers, sneaker soles, and rubber garden hose samples. These data emphasize that PPD antioxidants, PPDQs, and related TPs are important, previously overlooked contaminant classes in tire rubbers and elastomeric consumer products.


Subject(s)
Antioxidants , Benzoquinones , Phenylenediamines , Rubber , Antioxidants/analysis , Antioxidants/chemistry , Antioxidants/classification , Phenylenediamines/analysis , Phenylenediamines/chemistry , Phenylenediamines/classification , Rubber/chemistry , Benzoquinones/analysis , Benzoquinones/chemistry , Benzoquinones/classification , Tandem Mass Spectrometry
13.
Sci Total Environ ; 866: 161373, 2023 Mar 25.
Article in English | MEDLINE | ID: mdl-36621472

ABSTRACT

N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine-quinone (6PPDQ), one of the oxidation products of rubber antioxidant 6PPD, has been identified as a novel toxicant to many organisms. However, an understanding of its underlying toxicity mechanisms remained elusive. In this study, we reported that 6PPDQ could react with deoxyguanosine to form one isomer of 3-hydroxy-1, N2-6PPD-etheno-2'-deoxyguanosine (6PPDQ-dG). Next, by employing an ultra-performance liquid chromatography-electrospray ionization-tandem mass spectrometry (UPLC-ESI-MS/MS) method, we found that 6PPDQ-dG could be detected in genomic DNA from 6PPDQ-treated mammalian cells and Chlamydomonas reinhardtii. We observed positive correlations between concentrations of exogenous 6PPDQ and the amounts of 6PPDQ-dG, and a recovery period after removal of 6PPDQ also led to decreased levels of the adduct in both organisms, which suggested potential repair pathways for this adduct in mammalian cells and unicellular algae. Additionally, we extracted the genomic DNA from tissues of frozen capelin and observed substantial amounts of the adduct in roe and gills, as well as livers at a relatively lower level. These results provided insights into the target organs and tissues that 6PPDQ might accumulate or harm fish. Overall, our study provides a new understanding of the mechanisms of toxicity of 6PPDQ in mammalian cells and aqueous organisms.


Subject(s)
Antioxidants , Benzoquinones , Chlamydomonas reinhardtii , DNA Adducts , Phenylenediamines , Chromatography, High Pressure Liquid , Deoxyguanosine/chemistry , DNA Adducts/metabolism , Quinones , Spectrometry, Mass, Electrospray Ionization/methods , Tandem Mass Spectrometry/methods , Phenylenediamines/chemistry , Phenylenediamines/metabolism , Phenylenediamines/toxicity , Benzoquinones/chemistry , Benzoquinones/metabolism , Benzoquinones/toxicity , Antioxidants/chemistry , Antioxidants/metabolism , Antioxidants/toxicity , Chlamydomonas reinhardtii/drug effects , Chlamydomonas reinhardtii/genetics , Chlamydomonas reinhardtii/metabolism , Humans , A549 Cells
14.
Org Biomol Chem ; 21(3): 621-631, 2023 01 18.
Article in English | MEDLINE | ID: mdl-36562504

ABSTRACT

The reaction between 3,5-di(tert-butyl)-o-benzoquinone 1 and o-phenylenediamine performed under oxidative conditions that is highly sensitive to the reaction conditions (type of solvent, ratio of reactants, and duration of the reaction) gives rise to various derivatives of a new condensed 10H-quinoxalino[3,2,1-kl]phenoxazin-10-one heteropentacyclic system. The reaction of 1 with N-phenyl-o-phenylenediamine results in the formation of three phenazine-like compounds and, unexpectedly, a derivative of a new spiro[1,3]dioxole-2,2'-furanyl-1H-benzo[d]imidazole system. The molecular structures of the prepared compounds were authenticated by NMR, mass spectra and X-ray crystallography data.


Subject(s)
Benzoquinones , Phenylenediamines , Molecular Structure , Phenylenediamines/chemistry
15.
Dalton Trans ; 52(10): 2966-2975, 2023 Mar 07.
Article in English | MEDLINE | ID: mdl-36444991

ABSTRACT

DNA G-rich sequences can organize in four-stranded structures called G-quadruplexes (G4s). These motifs are enriched in significant sites within the human genomes, including telomeres and promoters of cancer related genes. For instance, KIT proto-oncogene promoter, associated with diverse cancers, contains three adjacent G4 units, namely Kit2, SP, and Kit1. Aiming at finding new and selective G-quadruplex binders, we have synthesized and characterized five non-charged metal complexes of Pt(II), Pd(II), Ni(II), Cu(II) and Zn(II) of a chlorine substituted Salphen ligand. The crystal structure of the Pt(II) and Pd(II) complexes was determined by XRPD. FRET measurements indicated that Pt(II) and Pd(II) compounds stabilize Kit1 and Kit2 G4s but not SP, telomeric and double stranded DNA. Spectroscopic investigations (UV-Vis, circular dichroism and fluorescence) suggested the Cu(II) complex as the most G4-selective compound. Interestingly, docking simulations indicate that the synthesized compounds fit groove binding pockets of both Kit1 and Kit2 G4s. Moreover, they exhibited dose-dependent cytotoxic activity in MCF-7, HepG2 and HeLa cancer cells.


Subject(s)
Antineoplastic Agents , Coordination Complexes , G-Quadruplexes , Humans , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Antineoplastic Agents/pharmacology , Phenylenediamines/chemistry , Circular Dichroism , Telomere
16.
Org Lett ; 24(45): 8392-8396, 2022 11 18.
Article in English | MEDLINE | ID: mdl-36351235

ABSTRACT

A novel methodology for the annulation of terminal alkynes and o-phenylenediamines by using a combination of a cobalt catalyst and oxygen as a terminal oxidant is reported. This method shows wide substrate scope and good functional group tolerance and provides a wide range of quinoxalines in good to high yields. The method is demonstrated by its gram-scale and broad potential applications. Furthermore, this protocol serves as a powerful tool for the late-stage functionalization of various complex bioactive molecules and drugs to provide a new class of molecules containing two distinct bioactive molecules directly linked. Detailed mechanistic studies reveal that the current reaction goes through a novel mechanism different from the previously reported glyoxal mechanism.


Subject(s)
Alkynes , Cobalt , Alkynes/chemistry , Cobalt/chemistry , Quinoxalines/chemistry , Catalysis , Phenylenediamines/chemistry
17.
J Med Chem ; 65(16): 11340-11364, 2022 08 25.
Article in English | MEDLINE | ID: mdl-35972998

ABSTRACT

Neuronal Kv7 channels represent important pharmacological targets for hyperexcitability disorders including epilepsy. Retigabine is the prototype Kv7 activator clinically approved for seizure treatment; however, severe side effects associated with long-term use have led to its market discontinuation. Building upon the recently described cryoEM structure of Kv7.2 complexed with retigabine and on previous structure-activity relationship studies, a small library of retigabine analogues has been designed, synthesized, and characterized for their Kv7 opening ability using both fluorescence- and electrophysiology-based assays. Among all tested compounds, 60 emerged as a potent and photochemically stable neuronal Kv7 channel activator. Compared to retigabine, compound 60 displayed a higher brain/plasma distribution ratio, a longer elimination half-life, and more potent and effective anticonvulsant effects in an acute seizure model in mice. Collectively, these data highlight compound 60 as a promising lead compound for the development of novel Kv7 activators for the treatment of hyperexcitability diseases.


Subject(s)
Anticonvulsants , KCNQ3 Potassium Channel , Animals , Anticonvulsants/chemistry , Anticonvulsants/pharmacology , Anticonvulsants/therapeutic use , Carbamates , KCNQ2 Potassium Channel , Mice , Phenylenediamines/chemistry , Phenylenediamines/pharmacology , Phenylenediamines/therapeutic use , Seizures/chemically induced , Seizures/drug therapy
18.
Acta Biomater ; 146: 107-118, 2022 07 01.
Article in English | MEDLINE | ID: mdl-35545186

ABSTRACT

The development of degradable hydrogel fillers with high antibacterial activity and wound-healing property is urgently needed for the treatment of infected wounds. Herein, an injectable, degradable, photoactivated antibacterial hydrogel (MPDA-BNN6@Gel) was developed by incorporating BNN6-loaded mesoporous polydopamine nanoparticles (MPDA-BNN6 NPs) into a fibrin-based hydrogel. After administration, MPDA-BNN6@Gel created local hyperthermia and released large quantities of NO gas to treat methicillin-resistant Staphylococcus aureus infection under the stimulation of an 808 nm laser. Experiments confirmed that the bacteria were eradicated through irreversible damage to the cell membrane, genetic metabolism, and material energy. Furthermore, in the absence of laser irradition, the fibrin and small amount of NO that originated from MPDA-BNN6@Gel promoted wound healing in vivo. This work indicates that MPDA-BNN6@Gel is a promising alternative for the treatment of infected wounds and provides a facile tactic to design a photoregulated bactericidal hydrogel for accelerating infected wound healing. STATEMENT OF SIGNIFICANCE: The development of a degradable hydrogel with high antibacterial activity and wound-healing property is an urgent need for the treatment of infected wounds. Herein, an injectable, degradable, and photo-activated antibacterial hydrogel (MPDA-BNN6@Gel) has been developed by incorporating BNN6-loaded mesoporous polydopamine nanoparticles (MPDA-BNN6 NPs) into a fibrin-based hydrogel. After administration of MPDA-BNN6@Gel, the MPDA-BNN6@Gel could generate local hyperthermia and release large quantities of NO gas to treat the methicillin-resistant Staphylococcus aureus infection under the irradiation of 808 nm laser. Furthermore, in the absence of a laser, the fibrin and a small amount of NO originating from MPDA-BNN6@Gel could promote wound healing in vivo.


Subject(s)
Anti-Bacterial Agents , Hydrogels , Methicillin-Resistant Staphylococcus aureus , Nanoparticles , Nitric Oxide , Wound Infection , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/chemistry , Fibrin/administration & dosage , Fibrin/chemistry , Hydrogels/administration & dosage , Hydrogels/chemistry , Methicillin-Resistant Staphylococcus aureus/drug effects , Nanoparticles/administration & dosage , Nanoparticles/chemistry , Nitric Oxide/administration & dosage , Nitric Oxide/chemistry , Phenylenediamines/administration & dosage , Phenylenediamines/chemistry , Staphylococcal Infections/drug therapy , Staphylococcal Infections/microbiology , Wound Healing/drug effects , Wound Infection/drug therapy , Wound Infection/microbiology
19.
J Chem Phys ; 156(12): 124703, 2022 Mar 28.
Article in English | MEDLINE | ID: mdl-35364864

ABSTRACT

To reach a deeper understanding of the charge storage mechanisms of electrode materials is one of the challenges toward improving their energy storage performance. Herein, we investigate the interfacial ion exchange of a composite electrode made of carbon nanotube/poly(ortho-phenylenediamine) (CNT/PoPD) in a 1M NaCl aqueous electrolyte via advanced electrogravimetric analyses based on electrochemical quartz crystal microbalance (EQCM). Classical EQCM at different scan rates of the potential revealed the complex electrogravimetric behavior likely due to multi-species participation at different temporal scales. Thereafter, in order to better understand the behavior of each species (ions, counter ions, and co-ions) in the charge compensation mechanism, the electrogravimetric impedance spectroscopy analysis (also called ac-electrogravimetry) was pursued. Ac-electrogravimetry revealed the role of each species where Na+ cations and Cl- anions as well as protons participate in the charge compensation mechanism of the CNT/PoPD composite with different kinetics and proportions. The water molecules with opposite flux direction with the cations are also detected, suggesting their exclusion during cationic species transfer. Having analyzed ac-electrogravimetry responses in depth, the synergistic interaction between the CNT and PoPD is highlighted, revealing the improved accessibility of species to new sites in the composite.


Subject(s)
Nanotubes, Carbon , Electrodes , Electrolytes , Nanotubes, Carbon/chemistry , Phenylenediamines/chemistry
20.
Anal Bioanal Chem ; 414(4): 1651-1662, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34988586

ABSTRACT

A sensing platform with both ratiometric fluorescence and colorimetric responses towards copper(II) ions (Cu2+) and D-penicillamine (D-pen) was constructed based on carbon dots (CDs). o-Phenylenediamine (OPD) was employed as a chromogenic development reagent for reaction with Cu2+ to generate the oxidation product 2,3-diaminophenazine (oxOPD), which not only emits green fluorescence at 555 nm, but also quenches the blue fluorescence of CDs at 443 nm via the inner filter effect (IFE) and Förster resonance energy transfer (FRET). Additionally, oxOPD exhibits obvious absorption at 420 nm. Since the intense chelation affinity of D-pen to Cu2+ greatly inhibits the oxidation of OPD, the intensity ratio of fluorescence at 443 nm to that at 555 nm (F443/F555) and the absorbance at 420 nm (A420) were conveniently employed as spectral response signals to represent the amount of D-pen introduced into the testing system. This dual-signal sensing platform exhibits excellent selectivity and sensitivity towards both Cu2+ and D-pen, with low detection limits of 0.019 µM and 0.092 µM, respectively. In addition, the low cytotoxicity of the testing reagents involved in the proposed sensing platform facilitates its application for live cell imaging.


Subject(s)
Colorimetry/methods , Copper/analysis , Penicillamine/analysis , Spectrometry, Fluorescence/methods , A549 Cells , Carbon , Colorimetry/instrumentation , Copper/blood , Copper/urine , Fluorescence Resonance Energy Transfer , Fluorescent Dyes/chemistry , Humans , Microscopy, Electron, Transmission , Oxidation-Reduction , Penicillamine/urine , Phenylenediamines/chemistry , Quantum Dots/chemistry , Quantum Dots/toxicity , Spectrometry, Fluorescence/instrumentation , Spectrophotometry, Ultraviolet
SELECTION OF CITATIONS
SEARCH DETAIL
...